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Abstract. We prove that a mesoscopic Josephson junction, irradiated with a quantum superposition of two
180◦-out of phase optical coherent states, exhibits an experimentally observable sensitivity to the quantum
coherences of the field state.

PACS. 73.23.-b Mesoscopic systems – 74.50.+r Proximity effects, weak links, tunneling phenomena, and
Josephson effects – 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states;
operational definitions of the phase of the field; phase measurements

The superposition principle and the consequent interfer-
ence of probability amplitudes turn out to be the most
distinctive aspects of quantum mechanics.

In this paper we consider a physical system consisting
of a dc voltage-biased mesoscopic Josephson junction (JJ)
irradiated by a single-mode quantized field of frequency
ω ≥ 2π × 1014 Hz. We show that exposing the junction
to a field prepared into a quantum linear combination of
two 180◦-out of phase coherent states |α〉 and |−α〉 [1,2],
then the dc component of the expectation value of the su-
percurrent operator exhibits an experimentally observable
behaviour sensitive to the relative quantum phase between
the two coherent components. Our approach clearly puts
into evidence that such a behaviour is strongly related to
the quantum-mechanical nature of the macroscopic phase
difference variable ϕ across the junction and of the super-
charge conjugate variable q. The novel results presented in
this paper demonstrate the possibility of detecting quan-
tum signatures of an optical single-mode electromagnetic
field through interference effects on the Cooper pairs cur-
rent. In addition, our theory transparently proves that an
ultrasmall JJ coupled to monochromatic nonclassical light
may be successfully used to distinguish pure states of radi-
ation against statistical mixtures. Our theoretical analysis
demonstrates that ultrasmall JJs provide a very promis-
ing device for testing the superposition principle, enrich-
ing and enhancing a point of view recently introduced by
Vourdas [3–5].

The problem of the non-linear dynamics of a JJ cou-
pled to an electromagnetic field has been investigated both
in a classical [6,7] and in a quantum context [8,9] intro-
ducing more or less restrictive approximations.

Mesoscopic JJs with very small capacitances C(≤
10−15 F) are today practically realized [10] and operate
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at very low temperatures T � ~Ω/kB ≈ 1 K. Their har-
monic regime is characterized by the plasma frequency
Ω =

√
EJEC/~ ≤ 1012 s−1. In such conditions, the quan-

tum nature of the JJ cannot be ignored, since the Coulomb
coupling constant EC is of the same order of or larger than
the Josephson coupling constant EJ(≈ 10−22 J), where
CEC = (2e)2 and 2eEJ = ~Icr, Icr being the critical cur-
rent of the JJ. It is worth emphasizing that for our pur-
poses we don’t work in the Coulomb blockade-like regime
characterized by the condition EC � EJ. We simply re-
quire that EC ∼ EJ in such a way that it is impossible
to neglect the quantum nature of the JJ but, at the same
time, we can still work in the phase representation.

The occurrence of quantum behaviour for the JJ is
taken into account adopting the commutation rule [ϕ, q] =
2ei [11]. Starting from the Hamiltonian of an isolated
JJ [12]

H0 =
q2

2C
+EJ(1− cosϕ) (1)

and using the minimal coupling-like rule

q → q + C(V0 + VF) (2)

the junction-field Hamiltonian can be cast in the form:

H =
[q + C(V0 + VF)]2

2C
+EJ(1− cosϕ) + ~ω

(
a†a+

1
2

)
(3)

where V0 and VF are respectively the classical and nonclas-
sical electromotive forces imposed on the superconductive
device. In fact, adopting the Voltage Bias Model [13] in ac-
cordance to which: 1) the effect of external radiation is to
produce an alternating electric field of the same frequency
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across the junction; 2) both the electric field and the cur-
rent density are constant all over the sample, then V0 +VF

may be thought of as the effective voltage difference across
the two electrodes of the mesoscopic junction.

Since the field dynamical variable VF appears explic-
itly in equation (3), we derive its expression in terms of
the usual annihilation and creation operators a and a† of
the monochromatic external field photon. To this end we
note that, making the dipole approximation exp(ik · r) ≈
1 embodied in the Voltage Bias Model, the following
Schrödinger representation of the operator E in vacuum

E = i
(
~ω

2ε0V

)1/2

û
{
a exp [ik · r]− a† exp [−ik · r]

}
(4)

may be approximated as

E = i
(
~ω

2ε0V

)1/2

û(a− a†) (5)

where V is the quantization volume and the polarization
unit vector û of the field mode, assumed linearly polarized,
is taken perpendicular to the plane electrodes of the JJ.
Thus the expression of the operator VF to be inserted into
the Hamiltonian (3) may be written down as

VF = |E|d = i
(
~ω

2CF

)1/2

(a− a†) (6)

where d is the JJ thickness (typically d ≈ 1 nm), εr the
relative dielectric constant of the thin insulating barrier
(εr ≈ 6) and the capacitive parameter CF is defined as

CF =
ε

d2

(πc
ω

)3

. (7)

In the Heisenberg picture the representative operators of
the field-JJ system evolve as follows:

ȧ = −iωa− (q + CV0)
√

ω

2~CF
− i

ω

2
C

CF
(a− a†) (8)

ȧ† = iωa† − (q + CV0)
√

ω

2~CF
− i

ω

2
C

CF
(a− a†) (9)

I ≡ −q̇ = Icr sinϕ (10)

ϕ̇ =
2e
~

( q
C

+ V0 + VF

)
. (11)

To treat this complicated operator coupled differential sys-
tem we must resort to some approximations. To this end
it seems appropriate, at this point, to make clear the im-
portance of keeping the operating temperature well below
1 K. On the one hand, such a condition, in fact, somehow
legitimates the expectation that quantum effects in the
supercurrent crossing our very low capacitance Josephson
junction are not washed out due to thermal fluctuations.
On the other hand, when conditions for neglecting this
source of dissipative effects are met, charge fluctuations
characterizing the dynamics of a JJ working in mesoscopic
regime, may be taken of the order of 2e. In other words,

we are assuming that the interaction between the JJ and
the dissipative environment is controllable at level such to
guarantee the quantumness of the nanodevice.

Coming back to system (8–11), let’s choose ω ≈
2π × 1014 Hz so that C � CF ≈ 10−12 F. This fact al-
lows neglecting the terms proportional to C/CF in equa-
tions (8, 9) with respect the other terms. Moreover, at
the light of the previous digression, due to the very small
intensity of the supercurrent crossing the ultrasmall sized
junction (order of magnitude of [q] ∼ 2e), we can neglect
all the backreaction corrections on the external field. Thus,
in accordance with such arguments, the time evolution of
the field mode is given by the equations

ȧ ≈ −iωa (12)

ȧ† ≈ iωa†. (13)

describing a free field evolution.
Finally, since under our assumptions ω � Ω ≈

1012 Hz, H0, given by equation (1), determines an evo-
lution, characterized by the plasma frequency Ω of the
JJ, which is much slower than that controlled by ω and
due to the terms describing effects from external field
in the Hamiltonian (3). In this way, in the time interval
ω−1 < ∆t < Ω−1, we legitimately neglect the term pro-
portional to q in equation (11) with respect to V0 + VF.
The operators ϕ and q, therefore, evolve in accordance
with the following approximated equations

I ≡ −q̇ = Icr sinϕ (14)

ϕ̇ ≈ 2e
~

(V0 + VF). (15)

It is of relevance to underline that albeit the ap-
proach leading from the system (8–11) to the new
system (12–15) is very crude, the dynamical behaviour
of the JJ as described by equations (14, 15) yet exhibits
the quantum nature of the nanodevice.

Integrating equations (12, 13) we derive the dynamical
behaviour of VF and successively of the supercurrent I(t)
after the explicit integration of equation (15). In this way
we definitively get

I(t) = Icr sin

{
2e
~

[
V0t−

√
~

2ωCF

×
[
a(0) exp(−iωt) + a†(0) exp(−iωt)

]]}
. (16)

Let’s suppose that the initial density matrix ρ describing
the field-JJ system may be factorized as

ρ(0) = ρJJ(0)⊗ ρF(0) (17)

where ρJJ(0)(ρF(0)) describes the material subsystem (ra-
diation field) at t = 0.

It is possible to calculate the expectation value of
the supercurrent I(t) by taking the trace of the oper-
ator I(t) multiplied by the reduced initial field density
matrix ρF(0):

〈I(t)〉 = Tr [ρF(0)I(t)] . (18)
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We have in fact demonstrated [14] that contributions com-
ing from tracing out also the phase states of the junction
introduced a simple proportionality factor only which does
not play any essential role when the interest is mainly fo-
cussed on the structure of the I−V characteristic of the JJ.

Suppose the field initially prepared into the state

ρF(0) = |Ψ〉〈Ψ | (19)

with

|Ψ〉 =
1
G
{|α〉 + exp(iθ)| − α〉} (20)

where G =
{

2 + 2 cos θ exp(−2|α|2)
}1/2 is the normaliza-

tion factor and |α〉 = ||α| exp(iθα)〉.
Quite recently there have been several proposals for

the generation of quantum superpositions of two coher-
ent states [15,16]. The interest toward these states, also
known as Schrödinger cats, stems from the consideration
that, due to probability amplitude interference effects [17],
they might exhibit nonclassical θ-dependent properties
pronounced enough to provide almost ideal conditions to
test basic aspects of quantum mechanics. For example,
putting θ = 0 (θ = π) we obtain the so called even (odd)
coherent states characterized by oscillations of the pho-
ton number distribution which are absent in the Yurke
and Stoler coherent state (θ = π/2) manifesting on the
contrary higher order squeezing [17]. It is important to
underline that the interference of quantum amplitudes re-
sults from the linear superposition principle that is one
of the most fundamental features of quantum mechanics.
After a lengthy calculation the time- dependent expres-
sion of the supercurrent 〈I(t)〉 can be cast in the following
form (ω0 = 2eV0/~):

〈I(t)〉
Icr

=
exp(−ξ2/2)

G2
[IMIXT + IINT] (21)

with

IMIXT =
+∞∑

K=−∞
JK(2ξ|α|)

× sin[(ω0 +Kω)t−Kθα]
(
1 + (−1)K

)
(22a)

IINT =

exp(−2|α|2)
+∞∑

K=−∞
IK(2ξ|α|) {sin[(ω0 +Kω)t−Kθα + θ]

+(−1)K sin[(ω0 +Kω)t−Kθα − θ]
}

(22b)

where ξ = e
√

2/
√
~ωCF is a real number. The term IINT

appearing in the right hand side of equation (21) reflects
quantum interference effects between |α〉 and |−α〉, related
to the specific initial condition of the field described by
equation (19).

Equation (21) expresses the main result of this paper:
a Josephson junction operating in a mesoscopic regime
provides a sensitive device for detecting quantum coher-
ences present in the state of the radiative field which it is
coupled to.

Fig. 1. Idc/Icr versus θ for the state with α = |α| = 1 and
ω0/ω = 1. Note the different behaviour for θ = 0, π (even and
odd coherent states) and θ = π/2 (Yurke-Stoler state).

In this sense we may claim that some properties ex-
hibited by the supercurrent mean value, in the context of
our theory, provide a direct test of the linear superposition
principle. Equations (21, 22) show that, when ω0 = Nω,
or 2eV0 = N~ω, with N arbitrary integer, the supercur-
rent would not average to zero. In this case, in fact, the
argument of one of the sinusoidal functions appearing in
both the summations present in equations (22), does not
depend on time and therefore dc current spikes appear.
These current spikes may be thought of as the quantum
analogue of the well-known Shapiro steps [18].

The key point of our result is that these current singu-
larities, occurring at voltages V0 = N(~ω/2e) on the I−V
characteristic of the JJ, exhibit details qualitatively and
quantitatively dependent on the field state parameters |α|,
θα and θ. This circumstance opens up the possibility of
relating the observable structure of the quantum Shapiro
steps to the quantum coherences of |Ψ〉 thusly exploiting
the effects of the quantum interference embodied in the
expression of 〈I(t)〉.

Had we started from the statistical mixture

ρF(0) =
1√
2

[|α〉〈α| + | − α〉〈−α|] (23)

instead of the pure state (19), we should have obtained
only the term IMIXT (with G2 = 2) in equation (21). This
means that all the quantum interference effects are em-
bodied in the term IINT. We note that, choosing θα = 0,
IMIXT cannot give dc contributions whatever the value
of the integer K is. Thus no Shapiro step appears in the
I−V characteristic of the JJ when the two coherent states
|α〉 and | − α〉 are only classically superimposed at t = 0.
A very different behaviour occurs when the initial field
state is described by equations (19, 20). In this case in
fact, α ∈ < and ω0 odd multiple of ω, lead to the ap-
pearance of Shapiro steps in the I−V characteristic. In
Figure 1 we show Idc/Icr versus θ. We see that, at least
in principle, the JJ device is suitable for distinguishing
different quantum coherences between |α〉 and | − α〉. In
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Fig. 2. Plot of Idc/Icr versus scaled voltage bias 2eV0/~ω for
a Yurke-Stoler coherent state with α = |α| = 1. The values of
the reported spikes are not to scale.

particular it shows that the I−V characteristic of the JJ
does not exhibit any structure for even and odd coherent
states (θ = 0 and π) whereas, Shapiro steps are present
when the Yurke and Stoler state (θ = π/2) is considered.
Figure 2 reports the first three dc-current spikes occurring
at ω0 = (2p+1)ω with p = 0, 1, 2 relative to this last state.

Even more interesting results arise when α is complex.
The position and the number of Shapiro steps depend both
on θα and on θ. Some aspects concerning the behaviour
of the mesoscopic Josephson junction in this case are re-
ported in Figure 3.

In conclusion we wish to point out that an experimen-
tal confirmation of the results presented in this paper on
the one hand would increase the applicative interest grown
up over the last few years towards these superconducting
devices and on the other hand would provide a good op-
portunity to witness the existence of macroscopic variables
possessing quantum nature.
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